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Abstract. Using the method of induced band representations of space groups, we have
performed a complete group-theory analysis of electron state symmetries in (GaAs)m(AlAs)n

superlattices grown along the [110] and [111] directions. The spin–orbit interaction has been
taken into account. The formulae giving, for arbitrary numbers of monolayersm and n, the
arrangements of atoms over the Wyckoff positions have been obtained. The selection rules
for both direct and phonon-assisted optical transitions have been derived. Using results of the
group-theory analysis, we predict some variations in the optical transitions whenm and/orn are
varied. We also propose polarized-light optical experiments to establish the detailed electron-
band structures of the superlattices.

1. Introduction

In a previous paper [1], we performed a complete group-theory analysis of electron
state symmetries in (GaAs)m(AlAs)n superlattices (SLs) grown along the [001] direction.
Using both the results of our group-theory analysis and data of various electronic-structure
calculations, we proposed polarized-light optical experiments to establish the actual picture
of optical transitions in these materials, which can be considered as a new class of artificially
grown crystals. We also predicted some variations in the optical spectra upon varyingm

and n. In this paper, we perform a similar analysis for the (GaAs)m(AlAs)n SLs grown
along the [110] and [111] directions.

To study the optical properties of SLs one should know the complete information about
their crystal structure. In section 2, we analyse the dependence of the structure of these mate-
rials not only on the growth direction [hkl] but also on the numbers of monolayersm andn.

For each direction of growth, the SLs constitute several single-crystal families specified
by different space groupsGi (the same within each family). These space groups have
been found for both the [110] [2] and [111] [3] growth directions. Nevertheless, from
the crystallographic point of view, the SLs with different numbers of monolayersm andn

are distinct crystals, even those belonging to the same family, since they differ from each
other by the arrangement of atoms over the Wyckoff positions. For the [001] orientation
of layers, the distribution of atoms in the primitive cell has been obtained in our previous
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papers [1, 4, 5]. For other orientations, the arrangement of atoms over the Wyckoff positions
in a primitive cell has not been analysed.

The dependence of the SL crystal structure on the numbers of monolayers influences the
phonon and electron states in these crystals. For the (GaAs)m(AlAs)n [110] and [111] SLs,
the symmetry of phonon states and the corresponding infrared and Raman spectra selection
rules have been investigated comprehensively during recent years [2, 3, 6]. A study of the
optical anisotropy of the (GaAs)m(AlAs)n [110] SLs has also been reported [7]. No result,
according to our knowledge, has been published concerning the symmetry properties of the
electron states in SLs grown in the [110] and [111] directions. In section 3, we analyse the
electron state symmetries at the symmetry points of the Brillouin zone (BZ).

It is worth noting that the (GaAs)1(AlAs)1 SL, i.e., the (1× 1) SL in a short notation,
grown along the [110] direction is the same as one grown along the [001] direction. Both
structural and symmetry properties of this special SL were analysed in detail in our previous
paper [1]. The analysis showed that the (1× 1) SL should be considered as a quite new
crystal whose properties have no more in common with those of the parent compounds
GaAs and AlAs than the latter do with each other. This SL—as well as the other SLs—
should be considered as a crystal with an enlarged unit cell compared with that of the parent
materials. Like every crystal, it possesses distinct crystal structure and physical properties
including optical ones. Possible polarized-light optical spectra of the (GaAs)1(AlAs)1 SL
were analysed in [1] as well.

Among the (GaAs)m(AlAs)n SLs, only the (1×1) [001/110]-grown SL can be considered
as a rather equilibrium crystal structure (like GaAs and AlAs) since the Ga0.5Al 0.5As alloy
is ordered to the (1× 1) SL under certain conditions of growth [8]. The other SLs can be
called ‘non-equilibrium’ crystals for they cannot be grown from a solution or melting under
equilibrium growth conditions. Note that the strong range-order ordering and formation of
superstructure have also been found in other III–V alloys (see [9] and references therein).
This is of interest not only from the thermodynamic point of view but also in respect to many
possible applications of short-period SLs such as avalanche devices and optical modulators
for integrated optics [10].

In section 4, we derive the selection rules for optical transitions in the (GaAs)m(AlAs)n

[110] and [111] SLs and predict which lines could be expected to be observed in polarized
optical spectra. Modifications of the spectra, when spin–orbit interaction and/or phonon-
assisted processes are taken into account, are analysed.

2. Crystal structures of superlattices

The crystal structures of typical representatives of different crystal families are presented in
figures 1–5. It should be noted that, to keep the standard settings of space groups for the
[110]-grown SLs, they axis is chosen to be the growth direction in contrast to [001]-grown
and [111]-grown SLs where it is thez-axis. Every (GaAs)m(AlAs)n SL grown along the
[110] direction has an orthorhombic structure, except for the tetragonal (1× 1) SL. In the
case of evenm+n, the SLs have simple lattices, whereas the lattices are body-centred when
m + n is odd. The symmetry of the SLs grown along the [111] direction is rhombohedral,
the crystal lattice being hexagonal whenm + n = 3k and trigonal whenm + n 6= 3k.

The space groups and formulae giving the atomic arrangements over the Wyckoff
positions in the (GaAs)m(AlAs)n SLs grown along the [001] direction are presented
elsewhere [1, 4, 5].

We give here similar results obtained for the [110] and [111] orientations of growth
axis. These results are summarized in tables 1 and 2, respectively. Here, the numbers
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Figure 1. The crystal structures of the (GaAs)3(AlAs)5 and (GaAs)1(AlAs)1 [110]-grown SLs
and corresponding BZs drawn by thick and thin lines, respectively. The corresponding points of
the BZ of the tetragonal (GaAs)1(AlAs)1 [001] SL, being isomorphic to (GaAs)1(AlAs)1 [110],
are marked by superscript 1.

preceding the chemical element symbols denote the numbers of such atoms at the Wyckoff
position shown in parentheses. Analysing tables 1 and 2 one can see that there are several
crystal families specified by different space groups, namely C1

2v, C7
2v, and C20

2v among the SLs
grown along the [110] direction as well as C1

3v and C5
3v among those grown along the [111]

direction. In turn, some of the crystal families can be subdivided into several subfamilies
specified by non-equivalent types of atomic arrangement over the Wyckoff positions. For
example, within the C12v crystal family, there are four SL subfamilies corresponding to odd
numbers of both GaAs and AlAs monolayers. The period of atomic arrangements over the
Wyckoff positions is equal to four for bothm andn in this case. The difference between
the subfamilies is subtle and results in the variations of occupation numbers of Wyckoff
positions with the same site symmetry by atoms of the same type.

The superlattice BZs (SLBZs) of the five space groups are shown in figures 1–5. The
SLBZs are embedded in the parent GaAs (AlAs) BZ in order to describe zone foldings.
With increasing values ofm andn, the SLBZs are reduced in theky ([110]-grown SLs) or
kz ([111]-grown ones) direction. As a result, symmetry points of the parent BZ fold onto
symmetry points of a SLBZ. Since, in both parent compounds GaAs and AlAs, the top of
the valence band is located at the0 point of the zinc-blende BZ whereas the bottom of the
conduction band is located respectively at the0 and X points, these are the most important
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Figure 2. The crystal structures and corresponding BZ of the (GaAs)2(AlAs)4 and
(GaAs)2(AlAs)2 [110]-grown SLs.

points. Therefore, it is worth determining which points of the SLBZ they fold onto (the0

point of the zinc-blende BZ naturally folds onto the0 point of an SLBZ). Table 3 gives
a description of the zone foldings including also the L point of the zinc-blende BZ whose
energy in the conduction band is intermediate between those of the0 and X points in both
GaAs and AlAs.

According to most calculations (for references, see e.g. our paper [1]), the conduction-
band minimum in the (1×1) [001]-grown SL is located at the R point of SLBZ, and this is a
point which the point L of the GaAs(AlAs) BZ folds onto. In (GaAs)m(AlAs)n [001]-grown
SLs withm = n, one of the lowest conduction-band states is usually located at the M point,
which the point X of the parent compounds’ BZ folds onto.

In the case ofm+n = 2k + 1 for every SL grown in any direction under consideration,
the symmetry points of AlAs (GaAs)—except for the0 point—fold onto surface points of
the SLBZ. In contrast, whenm + n = 2k, either X (for the [001] and [110] directions of
growth) or L (for the [111] direction) fold onto the0 point of the SLBZ and there are
chances, for some of these SLs, to exhibit a conduction-band minimum at the0 point with
rather low energy.

Very interesting is the case of even-layered [111]-grown SLs. Here, the SLBZ points
corresponding to the X point and an L-equivalent point of the GaAs BZ differ by some
primitive reciprocal vectors of the SLBZ. That is to say, they fold onto the same point of the
SLBZ, namely onto either the point F ifm + n = 6k ± 2 or the point M whenm + n = 6k.
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Figure 3. The crystal structures and corresponding BZ of the (GaAs)2(AlAs)3 and
(GaAs)1(AlAs)2 [110]-grown SLs.

3. Electron state symmetries

The space groups and atomic arrangements being established, we can determine the
symmetry of electron states in the (GaAs)m(AlAs)n SLs using the method of induced band
representations of space groups [5, 11–14]. This method allows one to establish a symmetry
correspondence between extended (Bloch) and localized (Wannier-type) one-electron states
in crystals. The electron state symmetries for different SLs are presented in tables 4–8.

The structure of table 4 is the following. Columns 1–4 contain the atomic arrangements
over the Wyckoff positions (sites in direct space) given in column 5 together with their
coordinates (in units of translation vectors of the crystallographic unit cell) and site symmetry
groups. Column 6 contains the Mulliken symbols of those irreducible representations (irreps)
of the site symmetry groups for these Wyckoff positions, according to which the localized
one-electron wave functions transform, as well as the symbols of double-valued irreps
(denoted by a bar over the irrep symbol) in the case where the spin–orbit interaction is taken
into account. As already noted in [1], though the Wannier-type orbitals may differ from
the corresponding atomic orbitals (s, p, d, etc) they have the same symmetry-transformation
properties (i.e. they transform according to the same irreps of a site symmetry group). The
remaining columns give the labels of single- and double-valued induced representations
in the k-basis, with the symbols ofk-points (wave vectors), their coordinates (in units
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Figure 4. The crystal structure and corresponding BZ of the (GaAs)2(AlAs)1 [111]-grown SL.

of primitive translations of the reciprocal lattice) and their point groups in rows 1–3
respectively, and the indices of small irreps of little groups in subsequent rows; these
determine the symmetries of Bloch states. In this table and in each of the following ones,
the labelling of the space group irreps is taken from [15], the labelling of the point group
irreps follows [16], and the site pointsq are indexed as Wyckoff positions from [17].

The structure of tables 5–8 differs from that of table 4 only by the number of
columns containing the atomic arrangements for typical representatives of each SL family
(columns 1–4 in table 4, columns 1–6 in table 6, and columns 1–5 in table 7). For the
other SL families (tables 5 and 8) all atoms in a primitive cell occupy the same Wyckoff
position. This is why atomic arrangements are not given in the latter tables.

As in our previous work [1], we limit ourselves to the s and p atomic-like localized
states (one s state and three p states per atom) since just these functions usually form
the uppermost valence-band states and the lowest conduction-band states and, therefore,
determine the interband optical transitions. Nevertheless, to describe the lower valence-band
states and upper conduction-band ones, the d states should be also taken into consideration.

Using tables 4–8 one can easily write down the symmetry of the SL band states at
symmetry points of the SLBZ and determine which localized states and which atoms in a
primitive cell contribute to them.

For example, in the (GaAs)1(AlAs)2 [111]-grown SL (table 7), the s Wannier-type
orbital corresponding to the Al atom in 1b Wyckoff position (for short, the s orbital of Al)
induces non-degenerate Bloch states01, A1, K2, H2, M1, and L1 (see table 7). Thus, 1 in
the column0 means small irrep01, 1 in the column A means A1, etc. We can also see
that 01 states are induced by s and pz orbitals of Ga and Al as well as by s and pz orbitals
of As, whereas the03 states are formed by px and py orbitals of all atoms. Thus, at the0
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Figure 5. The crystal structures and corresponding BZ of the (GaAs)3(AlAs)1 and
(GaAs)1(AlAs)1, [111]-grown SLs.

point we have six01 and six03 Bloch states resulting from s and p localized states (Ga,
Al, and As atoms). We can conclude, for example, that the Bloch states induced by px

and py orbitals of Ga, Al, and As atoms do not mix at the0 point with the states induced
by s and pz orbitals since they have different symmetries. These results could significantly
simplify the numerical calculations of electron-band structures of these materials since for
each particular band state we could limit the number of Wannier-type orbitals that should
be taken into account. This is especially important if the number of atoms per primitive
cell is very large as this is the case for most SLs.

In tables 4–8, the localized states of atoms which occupy low-symmetry positions which
do not belong to the so-called Q-set [5] (a small set of points in the real space) induce Bloch
states described by composite band representations. This means that they are direct sums
of simple irreps, indices of which are presented in corresponding lines of tables 4–8. The
simple band representations [5, 14] are induced by irreps of site symmetry groups of only
a small set of points in the real space. The band states induced by Wannier-type orbitals
corresponding to atoms occupying the Wyckoff positions which do not belong to the Q-set
are composite, i.e. they are formed by a combination of simple band representations induced
by orbitals of atoms occupying Wyckoff positions from the Q-set.

When the spin–orbit interaction is taken into consideration, the s, p, etc localized orbitals
are replaced by the|J, mJ 〉 orbitals whereJ andmJ are the total angular momentum and
its projection. The corresponding double-valued induced representations are also given in
tables 4–8. In the case of (1× 2) [111]-grown SL taken as an example, the p-derived
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Table 1. Atomic arrangements over the Wyckoff positions in (GaAs)m(AlAs)n [110]-grown
SLs.

Space group C12v (Pmm2), m = 2k + l, n = 2l + 1; m 6 n

m + n = 4i + 2 m + n = 4i

m = 4s + 1 m = 4s + 3 m = 4s + 1 m = 4s + 3
n = 4t + 1 n = 4t + 3 n = 4t + 3 m = 4t + 1

1Ga(1a)
1As(1c)

1As(1b) 1Al(1b)
1Al(1d) 1As(1d)(

m+n
2 − 1

)
As(2g) m+n

2 As(2g)(
m+n

2 − 1
)
As(2h)

(
m+n

2 − 2
)
As(2h)

m−1
2 Ga(2g) m−3

2 Ga(2g) m−1
2 Ga(2g) m−3

2 Ga(2g)
m−1

2 Ga(2h) m+1
2 Ga(2h) m−1

2 Ga(2h) m+1
2 Ga(2h)

n−1
2 Al(2g) n+1

2 Al(2g) n−3
2 Al(2g) n−1

2 Al(2g)
n−1

2 Al(2h) n−3
2 Al(2h) n+1

2 Al(2h) n−1
2 Al(2h)

Space group C72v (Pmn21), m = 2k, n = 2l

mGa(2a) nAl(2a) (m + n)As(2a)

Space group C20
2v (Imm2), m + n = 2i + 1; m 6 n

m = 2s + 1 m = 2s

n = 2t n = 2t + 1

1As(1b)
(m + n − 1)As(2d)

1Ga(1a) 1Al(1a)
(m − 1)Ga(2d) (n − 1)Al(2d)

nAl(2d) mGa(2d)

| 3
2, ± 3

2〉 localized states of Ga will transform according to double-valued irrepsē(1)

1 andē(2)

1

whereas s-derived| 1
2, ± 1

2〉, p-derived| 3
2 ± 1

2〉, and| 1
2 ± 1

2〉 ones will transform according to
ē2. As a result, the 1201 + 603 states will become the 604 + 605 + 1806 ones.

The symmetry correspondence between the Bloch states which transform according to
single-valued irreps (without spin–orbit coupling) and those which transform according to
the double-valued irreps (with spin–orbit coupling) can be obtained following the procedure
described elsewhere [1, 18]. The Bloch stateDl(l = s, p) corresponds to the states which
transform according to the double-valued representationD̄J = Dl × D̄1/2 whereD̄1/2 is the
double-valued irrep according to which the spinor function is transformed. For the space
groups C1

2v, C7
2v, and C20

2v the spinor function is transformed according toD̄1/2 = ē, and
for the space groups C1

3v and C5
3v according toē2. Decomposing the corresponding direct

products of coordinate and spinor parts of the one-electron wave function, we obtain the set
of states into whichDl transforms when spin–orbit interaction is included. At the centre of
the BZ, the symmetry correspondence is the following:01 → 06, 03 → 04 + 05 + 06 (the
C3v groups in question),0i (i = 1–4) → 05 (the C2v groups).

There is a sole double-valued irrep (doubly degenerate) at every symmetry point for the
group C1

2v (e.g. 05 at the0 point, cf table 4). There also exists only one double-valued irrep
at points belonging to some symmetry lines of the SLBZ, e.g., the35 irrep for the symmetry
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Table 2. Atomic arrangements over the Wyckoff positions in (GaAs)m(AlAs)n [111]-grown
SLs.

Space group C13v (P 3ml), m + n = 3i

m = 3s m = 3s + 1 m = 3s + 2

n = 3t n = 3t + 2 n = 3t + 1

m+n
3 As(1a)

m+n
3 As(1b)

m+n
3 As(1c)

m
3 Ga(1a) n

3 Al(1a) m+2
3 Ga(1a) n−2

3 Al(1a) m+1
3 Ga(1a) n−1

3 Al(1a)
m
3 Ga(1b) n

3 Al(1b) m−1
3 Ga(1b) n+1

3 Al(1b) m+1
3 Ga(1b) n−1

3 Al(1b)
m
3 Ga(1c) n

3 Al(1c) m−1
3 Ga(1c) n+1

3 Al(1c) m−2
3 Ga(1c) n+2

3 Al(1c)

Space group C53v(R3m), m + n 6= 3i

mGa(1a) nAl(1a) (m + n)As(1a)

Table 3. The foldings of the symmetry points0, X, and L in (GaAs)m(AlAs)n SLs.

m, n

Compounds Space group Parity Symmetry points

GaAs (AlAs) m + n = 1, T2
d 0 6X 8L

[001]-grown SLs m + n = 2i, D5
2d i = 2k 0 20 + 4M 4R+ 4X

i = 2k + 1 0 20 + 4M 8R

m + n = 2i + 1, D9
2d 0 2M + 4X 8N

[110]-grown SLs m = n = 1, D5
2d 0 20 + 4M 4R+ 4X

m + n = 2i, C1
2v, C7

2v i = 2k 0 20 + 4X 4Z + 4U

i = 2k + 1 0 20 + 4S 4T+ 4U

m + n = 2i + 1, C20
2v 0 2X + 4R 4T+ 4S

[111]-grown SLs m + n = 3i, C1
3v m + n = 2k 0 6M 20 + 6M

m + n = 2k + 1 0 6M 2A + 6L

m + n 6= 3i, C5
3v m + n = 2k 0 6F 20 + 6F

m + n = 2k + 1 0 6F 2T+ 6L

line 0–(3)–Z. In contrast, for other symmetry lines in this SLBZ, there are two double-
valued irreps (non-degenerate), which are complex conjugated, e.g.13 and14 at points of
the 0–(1)–Y line. The complex-conjugated irreps forming a pair correspond to different
states with the same energy. This degeneracy is connected with the inversion of time and
can be lifted by applying the magnetic field which does not reduce the point symmetry of
the system (that is one directed along the symmetry axis). The complex-conjugated irreps
can be combined in so-called co-representations (co-reps), which are also called ‘physically
irreducible representations’ (doubly degenerate). The corresponding pairs of irreps forming
co-reps are given in the captions of tables 5–8. On applying the magnetic field, the states
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Table 4. Electron state symmetries in (GaAs)m(AlAs)n [110]-grown SLs with the space group
C1

2v.

0 X Y Z S T U R
m = 1 m = 3 m = 3 m = 5 C1

2v (000) (1
200) (01

20) (001
2) ( 1

2
1
20) (01

2
1
2) ( 1

201
2) ( 1

2
1
2

1
2)

n = 3 n = 3 n = 5 n = 5 (Pmm2) C2v C2v C2v C2v C2v C2v C2v C2v

1Ga 1Ga 1Ga 1Ga a1(s; pz) 1 1 1 1 1 1 1 1
1a b2(py) 3 3 3 3 3 3 3 3
(00z) b1(px ) 4 4 4 4 4 4 4 4
C2v ē 5 5 5 5 5 5 5 5

1Al 1As 1Al 1As a1(s; pz) 1 1 3 1 3 3 1 3
1b b2(py) 3 3 1 3 1 1 3 1
(01

2z) b1(px ) 4 4 2 4 2 2 4 2
C2v ē 5 5 5 5 5 5 5 5

1As 1As 1As 1As a1(s; pz) 1 4 1 1 4 1 4 4
1c b2(py) 3 2 3 3 2 3 2 2
( 1

20z) b1(px ) 4 1 4 4 1 4 1 1
C2v ē 5 5 5 5 5 5 5 5

1As 1Al 1As 1Al a1(s; pz) 1 4 3 1 2 3 4 2
1d b2(py) 3 2 1 3 4 1 2 4
( 1

2
1
2z) b1(px ) 4 1 2 4 3 2 1 3

C2v ē 5 5 5 5 5 5 5 5

2Ga a′(s; py ,pz) 1, 3 1, 3 1, 3 1, 3 1, 3 1, 3 1, 3 1, 3
2Al 2Al 2Al 2g a′′(px ) 2, 4 2, 4 2, 4 2, 4 2, 4 2, 4 2, 4 2, 4

2As 2As 4As 4As (0yz) ē(1) 5 5 5 5 5 5 5 5
Cs ē(2) 5 5 5 5 5 5 5 5

2Ga 2Ga a′(s; py ,pz) 1, 3 2, 4 1, 3 1, 3 2, 4 1, 3 2, 4 2, 4
2Ga 2Al 2Al 2h a′′(px ) 2, 4 1, 3 2, 4 2, 4 1, 3 2, 4 1, 3 1, 3

2Al 2As 4As 4As (12yz) ē(1) 5 5 5 5 5 5 5 5
Cs ē(2) 5 5 5 5 5 5 5 5

Table 5. Electron state symmetries in (GaAs)m(AlAs)n [110]-grown SLs with the space group
C7

2v (co-reps: X2 + X5, X3 + X4, Z1 + Z3, Z2 + Z4, U2 + U3, U4 + U5, S2 + S5, S3 + S4,
T1 + T3, T2 + T4, R2 + R3, R4 + R5).

0 X Y Z S T U R
(000) (1

200) (01
20) (001

2) ( 1
2

1
20) (01

2
1
2) ( 1

201
2) ( 1

2
1
2

1
2)

C7
2v(Pmm21) C2v C2v C2v C2v C2v C2v C2v C2v

2a a′(s; py , pz) 1, 3 1 1, 3 1, 3 1 1, 3 1 1
(0yz) a′′(px ) 2, 4 1 2, 4 2, 4 1 2, 4 1 1
Cs ē(1) 5 2, 4 5 5 2, 4 5 2, 4 2, 4

ē(2) 5 3, 5 5 5 3, 5 5 3, 5 3, 5

described by complex-conjugated irreps are split whereas the states described by doubly
degenerate irreps are not.

A very similar situation takes place in the case of the groups C20
2v and C7

2v. There
exists only a doubly degenerate irrep at some symmetry points and symmetry lines (e.g.
05, 35, etc), whereas, at other symmetry points and lines, there are complex-conjugated
irreps, which form co-representations—e.g. (S3, S4), (13, 14), etc, so, the inclusion of
the spin–orbit interaction into consideration simplifies the band picture, reducing to one the
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Table 6. Electron state symmetries in (GaAs)m(AlAs)n [110]-grown SLs with the space group
C20

2v (co-reps: S3 + S4, R3 + R4, T3 + T4).

0 X S R T W
m = 1 m = 2 m = 1 m = 2 m = 1 m = 3 C20

2v (000) (1
2

1
2

1
2) ( 1

200) (01
20) (001

2) ( 1
4

1
4

1
4)

n = 2 n = 3 n = 4 n = 5 n = 6 n = 4 (Imm2) C2v C2v Cs Cs C2 C2

1Ga 1Al 1Ga 1Al 1Ga 1Ga 1a a1(s; pz) 1 1 1 1 1 1
(00z) b2(py ) 3 3 1 2 2 2
C2v b1(px ) 4 4 2 1 2 2

ē 5 5 3, 4 3, 4 3, 4 3, 4

1As 1As 1As 1As 1As 1As 1b a1(s; pz) 1 1 1 1 2 2
(01

2z) b2(py ) 3 3 1 2 1 1
C2v b1(px ) 4 4 2 1 1 1

ē 5 5 3, 4 3, 4 3, 4 3, 4

2Ga 2Ga 2Ga 2d a′(s; py ,pz) 1, 3 1, 3 1, 1 1, 2 1, 2 1, 2
2Al 2Al 4Al 4Al 6Al 4Al (0 yz) a′′(px ) 2, 4 2, 4 2, 2 1, 2 1, 2 1, 2
2As 4As 4As 6As 6As 6As Cs ē(1) 5 5 3, 4 3, 4 3, 4 3, 4

ē(2) 5 5 3, 4 3, 4 3, 4 3, 4

Table 7. Electron state symmetries in (GaAs)m(AlAs)n [111]-grown SLs with the space group
C1

3v (co-reps:04 + 05, A4 + A5, M3 + M4, L3 + L4).

0 A K H M L
m = 1 m = 2 m = 3 m = 1 m = 2 C1

3v (000) (001
2) ( 1

3
1
30) (1

3
1
3

1
2) ( 1

200) (1
201

2)
n = 2 n = 1 n = 3 n = 5 n = 4 (P 3ml) C3v C3v C3 C3 Cs Cs

1Ga 1Ga 1Ga a1(s; pz) 1 1 1 1 1 1
1Ga 1Ga 1Al 1Al 1Al e(px ,py ) 3 3 2, 3 2, 3 1, 2 1, 2
1As 1As 2As 2As 2As 1a ē(1)

1 4 4 5 5 4 4
(00z) ē(2)

1 5 5 5 5 3 3
C3v ē2 6 6 4, 6 4, 6 3, 4 3, 4

1Ga 1Ga a1(s; pz) 1 1 2 2 1 1
1Al 1Ga 1Al 2Al 1As e(px ,py ) 3 3 1, 3 1, 3 1, 2 1, 2
1As 1As 2As 2As 2As 1b ē(1)

1 4 4 6 6 4 4
( 1

3
2
3z) ē(2)

1 5 5 6 6 3 3
C3v ē2 6 6 4, 5 4, 5 3, 4 3, 4

1Ga a1(s; pz) 1 1 3 3 1 1
1Al 1Al 1Al 2Al 2Al e(px ,py ) 3 3 1, 2 1, 2 1, 2 1, 2
1As 1As 2As 2As 2As 1c ē(1)

1 4 4 4 4 4 4
( 2

3
1
3z) ē(2)

1 5 5 4 4 3 3
C3v ē2 6 6 5, 6 5, 6 3, 4 3, 4

number of representations describing electron state symmetries at a given point of the SLBZ
of [110]-grown SLs.

More complicated is the case of the [111]-grown SLs. When the spin–orbit coupling is
taken into account, even at the0 point, there are both states that are described by doubly
degenerate irreps,06, and states which can be described by co-representations, (04, 05).
Only the latter will split on applying the magnetic field, not reducing the C3v symmetry.
In addition, it is to be noticed that, for [111]-grown SLs, there are two doubly degenerate
06 states, one being derived from the01 state and the other originating from the doubly
degenerate03 one.
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Table 8. Electron state symmetries in (GaAs)m(AlAs)n [111]-grown SLs with the space group
C5

3v (a = a1 + a2 + a3; co-reps:04 + 05, T4 + T5, L3 + L4, F3 + F4).

0 T L F
(000) (1

2
1
2

1
2) (01

20) (1
2

1
20)

C5
3v(R3m) C3v C3v Cs Cs

1a a(s; pz) 1 1 1 1
(νa) e(px , py ) 3 3 1, 2 1, 2
C3v ē(1)

1 4 4 3 3
ē(2)

1 5 5 4 4
ē2 6 6 3, 4 3, 4

Table 9. The correspondence between the0 irreps of different space groups describing bulk
GaAs (AlAs) and SLs grown along different directions. For the cubic Td symmetry, the Miller–
Love [15] notation is used, the commonly used labelling being given in parentheses.

Td D2d C2v C3v D2d C2v

GaAs(AlAs) [001] [110] [111] [001] [110]

Single-valued irreps
01 (01) 01 01 01 01 01

02 (02) 04 02 02 02 01

03 (012) 01 + 04 01 + 02 03 03 02

04 (0′
15) 02 + 05 01 + 03 + 04 01 + 03 04 02

05 (0′
25) 03 + 05 02 + 03 + 04 02 + 03 05 03 + 04

Double-valued irreps
06 (07) 06 05 06 06 05

07 (06) 07 05 06 07 05

08 (08) 06 + 07 05 + 05 04 + 05 + 06

At lower symmetry points, the bands that are degenerated at symmetry points of SLBZ
can split. For the SLs with the space groups C1

2v, such splitting can exist—although only in
the presence of the magnetic field—along the symmetry lines0–(1)–Y–(C)–S–(D)–X–(6)–
0 and Z–(B)–T–(E)–R–(P)–U–(A)–Z whereas it is absent along the0–(3)–Z, Y–(H)–T,
X–(G)–U, and S–(Q)–R symmetry lines. Note that bands also remain degenerate along the
symmetry line0–Z in the other [110]- and [111]-grown SLs.

One can obtain the correspondence between the irreps of different space groups.
Physically, such a correspondence reflects a similarity of symmetry properties of electron
states in different (GaAs)m(AlAs)n SLs and GaAs(AlAs) crystals. It is reasonable to consider
the correspondence when the alteration of the system symmetry slightly changes symmetry
properties of localized states. Alteration of such a kind can appear either under small
perturbation (e.g. under pressure/mismatching) or on replacing certain atoms in a lattice
(transformation of one SL into another).

The relations between the irreps of a main group and those of its subgroup can
be established by subducing the irreps of the group on the subgroup. By doing this,
some of the irreps remain irreducible whereas the others become reducible representations.
Decomposing the latter over the irreps of the subgroup, one obtains a sum of irreps of the
subgroup, which correspond to the irrep of the main group.

The correspondence is presented in table 9 where, as the main group, either the Td

group (the left part of table 9) or the D2d group (the right part) is taken. One can see
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Figure 6. The correspondence between the band states at the centre of the BZ of
(GaAs)m(AlAs)n SLs originating from the bottom of the conduction band and the top of the
valence band of bulk GaAs (AlAs). The co-rep04 + 05 describes a degenerate state of the
(GaAs)m(AlAs)n [111] SL.

that, on lowering the symmetry from a cubic Td (GaAs or AlAs) down to a tetragonal D2d

(the [001]-grown SLs; pressure along a fourth-order axis), the04 states (0′
15 states in usual

notation) split into02 and05 ones (note different notations of irreps within different groups).
When the spin–orbit interaction is taken into account, this corresponds to the splitting of
08 states into06 and07 ones. On further lowering the symmetry down to an orthorhombic
C2v (the [110]-grown SLs; pressure along a C2 axis), the05 states split into03 + 04 ones.
Figure 6 shows the symmetry modification of the lowest conduction-band and the highest
valence-band states at the centre of the BZ when the system symmetry changes.

4. Optical-transition selection rules

The selection rules for optical transitions follow from the symmetry restrictions imposed
on matrix elements of transitions from an initial (i) electron state to a final (f ) one. The
transitions can be allowed [1] between those pairs of electron statesDf andDi for which the
Kronecker product contains the rep withk = 0. In tables 10–13, we present thek = 0 parts
of Kronecker products of irreps corresponding to various combinations of initial and final
electron states at the symmetry points of the SLBZ. For example, within the space group
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Table 10. Selection rules for direct optical transitions in (GaAs)m(AlAs)n [110] SLs with the
space group C12v for the symmetry points D= 0, X, Y, Z, S, T, U, and R.

Allowed
01 02 03 04 polarizations

Single-valued irreps
Di × Di (i = 1–4) + z

D1 × D2, D3 × D4 + forbidden
D1 × D3, D2 × D4 + y

D1 × D4, D2 × D3 + x

Double-valued irreps (with spin–orbit interaction included)
D5 × D5 + + + + x, y, z

Table 11. Selection rules for direct optical transitions in (GaAs)m(AlAs)n [110] SLs with the
space group C72v.

Allowed
01 02 03 04 polarizations

Single-valued irreps
D = 0, Y

Di × Di (i = 1–4) + z

D1 × D2, D3 × D4 + forbidden
D1 × D3, D2 × D4 + y

D1 × D4, D2 × D3 + x

D = Z, T
Di × Di (i = 1–4) + y

D1 × D2, D3 × D4 + x

D1 × D3, D2 × D4 + z

D1 × D4, D2 × D3 + forbidden

D = X, S, U, R
D1 × D1 + + + + x, y, z

Double-valued irreps (with spin–orbit interaction included)
D = 0, Y, Z, T

D5 × D5 + + + + x, y, z

D = X, S
Di × Di (i = 2–5) + x

D2 × D3, D4 × D5 + y

D2 × D4, D3 × D5 + forbidden
D2 × D5, D3 × D4 + z

D = U, R
Di × Di (i = 2–5) + forbidden
D2 × D3, D4 × D5 + z

D2 × D4, D3 × D5 + x

D2 × D5, D3 × D4 + y

C20
2v, R1 ×R2 = 02 +03 +X2 +X3, and+ in the columns02 and03 means that these irreps

form part of the direct product. The transitions are allowed between those pairs of states for
which Kronecker products have irreps in common with the vector representation. For the
space groups C12v, C7

2v, and C20
2v, the vector representation isDν = 01(z) + 03(y) + 04(x);
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Table 12. Selection rules for direct optical transitions in (GaAs)m(AlAs)n [110] SLs with the
space group C20

2v.

Allowed
01 02 03 04 polarizations

Single-valued irreps
D = 0, X

Di × Di (i = 1–4) + z

D1 × D2, D3 × D4 + forbidden
D1 × D3, D2 × D4 + y

D1 × D4, D2 × D3 + x

S1 × S1, S2 × S2 + + y, z

S1 × S2 + + x

R1 × R1, R2 × R2 + + x, z

R1 × R2 + + y

D = T, W
D1 × D1, D2 × D2 + + z

D1 × D2 + + x, y

Double-valued irreps (with spin–orbit interaction included)
05 × 05, X5 × X5 + + + + x, y, z

S3 × S3, S4 × S4 + + x

S3 × S4 + + y, z

R3 × R3, R4 × R4 + + y

R3 × R4 + + x, z

T3 × T3, T4 × T4, W3 × W4 + + x, y

W3 × W3, W4 × W4, T3 × T4 + + z

for the space groups C1
3v and C5

3v, it is Dν = 01(z) + 03(x, y). Thus, the optical transition
between the states R1 and R2 taken above as an example is allowed in they polarization and
forbidden in thex andz polarizations. For co-repsDi + Dj , the corresponding Kronecker
products of separate irrepsDi × Di = Di × (Dj )

∗ andDi × Dj = Di × (Di)
∗ describe the

transitions between the statesDi andDj , andDi andDi , respectively.
The upper parts of tables 10–13 give the selection rules without account of spin–orbit

coupling. The latter mixes states and smooths the difference between them, especially for
the [110]-grown SLs. When the spin–orbit interaction is taken into consideration, all direct
optical transitions are completely allowed between the0 states in the [110]-grown SLs (cf
the last line of table 10). This is another manifestation of the fact that these band states
do not differ from each other in symmetry (see section 3). However, in actual SLs, the
spin–orbit interaction is not extremely strong. This is why, when analysing optical spectra,
it is worth taking into account the genesis of states, that is the symmetry correspondence
between Bloch states with and without this interaction, and modification of selection rules.
For example, a transition between two01 states is allowed only in thez polarization, and the
transition between05 states originating from them is allowed in thex andy polarizations as
well. So, in actual (GaAs)m(AlAs)n [110]-grown SLs, all the direct0–0 optical transitions
should be observed in the polarized spectra, though some of them being allowed in certain
polarizations only due to the spin–orbit interaction.

As to other points of the BZ of [110]-grown (GaAs)m(AlAs)n SLs and every BZ point
of [111]-grown ones, the picture is not so simple. If both the spin–orbit interaction is
taken into account and the magnetic field is absent, some of the band states can be
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Table 13. Selection rules for direct optical transitions in (GaAs)m(AlAs)n [110] SLs with the
space group C13v (the 0, A, H, K, L, and M symmetry points) and C53v ( the 0, T, L, and F
symmetry points of the SLBZ).

Allowed
01 02 03 polarizations

Single-valued irreps
D = 0, T, A

D1 × D1, D2 × D2 + z

D1 × D2 + forbidden
D1 × D3, D2 × D3 + x, y

D3 × D3 + + + x, y, z

D = H, K
Di × Di (i = 1–3) + + z

D1 × D2, D1 × D3, D2 × D3 + x, y

D = L, F, M
D1 × D1, D2 × D2 + + x, y, z

D1 × D2 + + x, y

Double-valued irreps (with spin–orbit interaction included)
D = 0, T, A

D4 × D4, D5 × D5 + forbidden
D4 × D5 + z

D4 × D6, D5 × D6 + x, y

D6 × D6 + + + x, y, z

D = H, K
Di × Di (i = 4–6) + + z

D4 × D5, D4 × D6, D5 × D6 + x, y

D = L, M, F
D3 × D4 + + x, y, z

D3 × D3, D4 × D4 + + x, y

described by co-reps, having the same energies. The selection rules for the transitions
between such combined states can be easily obtained since the co-reps are direct sums of
complex-conjugated counterparts. The magnetic field lifts the degeneracy related to the
time inversion. As a result, states which are described by complex-conjugated irreps may
have different energies and be involved in transitions with different selection rules (tables
11–13).

For the (GaAs)m(AlAs)n [111]-grown SLs, taking into account the symmetry
correspondence between single- and double-valued irreps, we can obtain a relation between
the selection rules when the spin–orbit interaction is taken into consideration (lower parts
of table 13) and those when it is not (upper part). This correspondence is schematically
presented in figure 7. From table 13, it follows that, whereas the transition betwen two06

states is completely allowed when both of them are derived from the03 states, the oscillator
strength of a transition between two06 states originated either from the01 and 03 states
or from two 01 states depends on the intermixing of01 and 03 states by the spin–orbit
interaction, that is on the strength of the latter. When the interaction is taken into account,
a 01–01-originated transition (allowed in thez polarization) becomes weakly allowed in the
x andy polarizations, and the01–03-originated one (allowed in thex andy polarizations)
does in thez polarization. These peculiarities of different06 states can help to interpret the
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Figure 7. The modification of allowed direct optical transitions on including spin–orbit
interaction (the space groups C1

3v and C5
3v): (a) without spin–orbit interaction; (b) including

spin–orbit interaction.

optical spectra. Additional information can be obtained in experiments with the magnetic
field, not reducing the system symmetry. The latter does not split double-degenerated06

states, whereas ‘physically degenerated’ (04, 05) states can split, multiplying the number
of direct optical transitions.

Besides direct optical transitions, the phonon-assisted ones may be of importance. In
the same manner, as was done for the (GaAs)m(AlAs)n [001]-grown SLs [1], we can obtain
the selection rules for phonon-assisted optical transitions. For the [001] short-period SLs
as well as for both parent compounds, the uppermost valence-band states at the0 point
are about 1 eV higher in energy than the states at the other symmetry points [1]. One
can expect that this will be the case for the (GaAs)m(AlAs)n [110]- and [111]-grown SLs.
Therefore, due to such a large difference in energy, for the light-absorption processes, one
can neglect the transitions via the virtual valence-band states at symmetry points with wave
vectork 6= 0. This is why we consider both initial and virtual electron states belonging to
the samek = 0 (0 states).

The results are presented in tables 14 and 15. For [110]-grown SLs when spin–orbit
interaction is taken into account, not only are all transitions between initial and virtual
0 states allowed (since all direct0–0 optical transitions are completely allowed) but,
moreover, any phonon (with an appropriate wave vector) can participate in transitions
between virtual and final states. When neglecting the spin–orbit interaction, a phonon-
assisted process is allowed if the transition between initial and virtual states is allowed. The
only question is, therefore, which of the phonons participates in the transition. Table 14
gives these assisting phonons. Table 15 presents the selection rules for the (GaAs)m(AlAs)n

[111]-grown SLs.
The transitions involving optical phonons withk = 0, which are of special importance

when two conduction bands have energies close one to the other at the0 point, are also
included in tables 13–15. When two valence bands are close to each other at the centre of the
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Figure 8. Possible energy-level diagrams and dipole-allowed direct optical transitions in
(GaAs)m(AlAs)n superlattices: (a) [110] grown; (b) [111] grown. The0 states of SLs not
originating from0 states of the parent materials and corresponding optical transitions involving
these states are shown by dashed lines. The states without spin–orbit interaction are given in
square brackets; the corresponding folded bulk states are shown in parentheses.

SLBZ, there may also exist0-phonon-assisted optical transitions via virtual valence-band
states, the selection rules being similar to the ones given in the tables.

As a result of the above analysis, we can roughly outline the picture of interband
transitions in (GaAs)m(AlAs)n [110]- and [111]-grown SLs. Figure 8 schematically presents
energy-level diagrams for these SLs. In order not to overload the diagrams, only states at
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Table 14. Selection rules and assisting phonons for indirect optical transitions in
(GaAs)m(AlAs)n [110] SLs with the space group C1

2v, C7
2v, and C20

2v.

Final states

D = 0, Y, Z, T
(C1

2v, C7
2v)

D = X, S, U, R
(C1

2v) D = X, S, U, R D= S, R D= T, W
D = 0, X (C20

2v) (C7
2v) (C20

2v) (C20
2v)

Initial Virtual
state state Without the spin–orbit interaction
(valence (conduction Allowed
band) band) polarizations D1 D2 D3 D4 D1 D1 D2 D1 D2

Assisting phonons
01 01 z D1 D2 D3 D4 D1 D1 D2 D1 D2

02 forbidden — — — — — — — — —
03 y D3 D4 D1 D2 D1 D2 D1 D2 D1

04 x D4 D3 D2 D1 D1 D1 D2 D2 D1

02 01 forbidden — — — — — — — — —
02 z D2 D1 D4 D3 D1 D2 D1 D1 D2

03 x D3 D4 D1 D2 D1 D2 D1 D2 D1

04 y D4 D3 D2 D1 D1 D1 D2 D2 D1

03 01 y D1 D2 D3 D4 D1 D1 D2 D1 D2

02 x D2 D1 D4 D3 D1 D2 D1 D1 D2

03 z D3 D4 D1 D2 D1 D2 D1 D2 D1

04 forbidden — — — — — — — — —

04 01 x D1 D2 D3 D4 D1 D1 D2 D1 D2

02 y D2 D1 D4 D3 D1 D2 D1 D1 D2

03 forbidden — — — — — — — — —
04 z D4 D3 D2 D1 D1 D1 D2 D2 D1

With the spin–orbit interaction
D5 Di (i = 2–5) Di (i = 3, 4) Di (i = 3, 4)

05 05 x, y, z D1 + D2 + D3 + D4 D1 D1 + D2 D1 + D2

the centre of the SLBZ and direct0–0 transitions arre included in the figure. Energy levels
corresponding to possible (in the casem + n = 2k) folded band states and corresponding
transitions involving these states are shown by dashed lines. Allowed polarizations of the
transitions are indicated by corresponding arrows, polarizations allowed only due to the
spin–orbit interaction in parentheses. In square brackets, the genesis of the band states is
indicated, i.e. irreps of original states determining the distinct features of the band states
are given. Since a group-theory analysis alone does not permit us to determine the energy
positions of different band states, these diagrams could be specified on obtaining additional
information from both band-structure calculations and experiments.

The analysis of the selection rules, results of band calculations, and the data of
polarized-light optical experiments is to create the picture of electron-band structures of
these superlattices. Studying the fine structure of the light-absorption spectra of high-
quality SLs and comparing the oscillator strengths of lines in different polarizations one
would obtain information of the nature of the lines (direct transitions and phonon-assisted
ones) and evaluate the strengths of both spin–orbit and electron–phonon interactions.
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Table 15. Selection rules and assisting phonons for indirect optical transitions in
(GaAs)m(AlAs)n [111] SLs with the space group C1

3v, C5
3v.

Final states

D = 0, A (C1
3v) D = H, K D = L, M (C1

3v)

D = 0, T (C5
3v) (C1

3v) D = L, F (C5
3v)

Initial Virtual
state state Without the spin–orbit interaction
(valence (conduction Allowed
band) band) polarizations D1 D3 D1 D2 D3 D1 D2

Assisting phonons
01 01 z D1 D3 D1 D2 D3 D1 D2

01 03 x, y D3 D1 + D3 D2 + D3 D1 + D3 D1 + D2 D1 + D2 D1 + D2

03 01 x, y D1 D3 D1 D2 D3 D1 D2

03 03 x, y, z D3 D1 + D3 D2 + D3 D1 + D3 D1 + D2 D1 + D2 D1 + D2

With the spin–orbit interaction

D4 D5 D6 D4 D5 D6 D3 D4

Assisting phonons
04 05 forbidden — — — — — — — —

04 z D3 none D3 D3 D1 D2 D2 D1

06 x, y D1 D3 D1 + D3 D1 + D2 D2 + D3 D1 + D3 D1 + D2 D1 + D2

05 05 z none D1 D3 D3 D1 D2 D1 D2

04 forbidden — — — — — — — —
06 x, y D1 D3 D1 + D3 D1 + D2 D2 + D3 D1 + D3 D1 + D2 D1 + D2

06 05 x, y none D1 D3 D3 D1 D2 D1 D2

04 x, y D3 none D3 D3 D1 D2 D2 D1

06 x, y, z D1 D3 D1 + D3 D1 + D2 D2 + D3 D1 + D3 D1 + D2 D1 + D2

5. Conclusion

Summing up, the main results of this paper are as follows.

(i) The (GaAs)m(AlAs)n [110] SLs belong to three families specified by space groups
C1

2v, C7
2v, and C20

2v whereas the (GaAs)m(AlAs)n [111] ones constitute two families, C1
3v

and C5
3v. In turn, depending on specific numbers of monolayers of materials constituting

the unit cell, the crystal families described by C1
2v, C20

2v, and C1
3v space groups are divided

into subfamilies corresponding to non-equivalent atomic arrangements over the Wyckoff
positions in the unit cell.

(ii) In contrast to [001] SLs, for [110] and [111] SLs, the rearrangement of atoms
over the Wyckoff positions within each family is more subtle and results in variation of
occupation of Wyckoff positions with the same site symmetry by atoms of the same type.

(iii) The symmetry of electronic band states at the symmetry points of the BZ and their
dependence on SL period for a whole set of SLs was determined.

(iv) It was found that for the [111] SLs there is a splitting of0 states due to the spin–
orbit interaction in contrast to the [110] SLs where such splitting is absent. Moreover, with
spin–orbit interaction being taken into account, all0 states have the same symmetry in the
[110] SLs.
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(iv) The selection rules for direct and phonon-assisted optical transitions including the
case when spin–orbit interaction is taken into account were established. We obtained a
hierarchy of optical transitions, i.e. allowed, allowed due to spin–orbit interaction, and
forbidden ones.
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